Webinar: MCP-Mod – Theory, Implementation and Extensions

Share Download as iCal file
Click the icons above to Share, Tweet or add this event to your calendar (iCal)
Other events (non-RSS)

Wednesday 08 May 2019, 02:00pm - 03:30pm

Location Online

About the event

MCP-Mod (Multiple Comparisons & Modelling) is a popular statistical methodology for model-based design and analysis of dose finding studies. This webinar will describe the theory behind MCP-Mod (plus extensions), and how to implement it within available software. Pantelis Vlachos (Cytel) will provide a brief introduction to the methodology and illustrate the MCP-MoD capabilities in EAST 6.5. Saswati Saha (Inserm, Aix-Marseille University) will discuss new variations and alternatives to MCP-Mod and show how to implement them in R. Neal Thomas (Pfizer) will present further technical details of MCP-Mod by evaluating the method using results from least squares linear model theory.



MCP-Mod in East®:  Early development dose-finding design and analysis

Pantelis Vlachos - Cytel Inc. 

Selection of a dose (or doses) to carry into a confirmatory phase III study is among the most difficult decisions in drug development. A prerequisite for informed decision making and dose selection at the end of phase II is a solid characterization of the dose-response relationship(s).The MCP-Mod method combines principles of multiple comparisons with modelling techniques to provide an efficient alternative to traditional dose-finding studies which are either designed and analyzed based on multiple comparisons of active doses vs placebo within an ANOVA framework, of assume a functional relationship between response and dose according to a certain parametric model. We illustrate MCP-Mod design and analysis capabilities with East®.


Understanding MCP-Mod dose finding as a method based on linear regression

Neal Thomas - Pfizer Inc.

MCP-MOD  is a testing and model selection approach utilizing contrast-based test statistics and p-values adjusted for multiple comparisons. The MCP-Mod procedure can be alternatively represented as a method based on simple linear regression, where 'simple' refers to the inclusion of an intercept and a single predictor variable, which is a transformation of dose. It is shown that the contrasts are equal to least squares linear regression slope estimates. The test for each contrast is the usual t-statistic for a null slope parameter, except that a variance estimate with fewer degrees of freedom is used in the standard error. Selecting the model corresponding to the most significant contrast p-value is equivalent to selecting the predictor variable yielding the smallest residual sum of squares. Many of the properties of MCP-Mod procedure can be understood and quantified using results from least squares linear model theory


Model based dose-finding methods in Phase II clinical trials

Saswati Saha - Inserm, Aix-Marseille University   

The primary objective of this presentation is to discuss dose-finding methods in Phase II clinical trials that can simultaneously establish the dose-response relationship and identify the right dose. MCP?Mod is one of the pioneer approaches developed within the last 10 years. Though MCP-Mod is identified as an efficient statistical methodology for model-based design and analysis of Phase II dose finding studies under model uncertainty, a major disadvantage of MCP-Mod is that the parameter values of the candidate models need to be pre-specified a priori for the PoC testing step. This may lead to loss in power and unreliable model selection. Off late several new variations and alternatives to MCP-Mod are explored where the parameter values need not be pre-specified in the PoC testing step and can be estimated after the model selection step. We will briefly introduce four such state-of-art dose-finding methods, show how to implement the methods in R software and present a numerical comparison between the different new methods and the MCP-Mod approach


Please click here to download the details.
This webinar is free to attend. Please click here to register.




Organiser Name Russell Jones

Email Address This email address is being protected from spambots. You need JavaScript enabled to view it.

Organising Group(s) PSI





Join the RSS

Join the RSS

Become part of an organisation which works to advance statistics and support statisticians

Copyright 2019 Royal Statistical Society. All Rights Reserved.
12 Errol Street, London, EC1Y 8LX. UK registered charity in England and Wales. No.306096

Twitter Facebook YouTube RSS feed RSS feed RSS newsletter

We use cookies to understand how you use our site and to improve your experience. By continuing to use our site, you accept our use of cookies and Terms of Use.